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Econometrica, Vol. 50, No. 3 (May, 1982) 

NOTES AND COMMENTS 

A COMPUTATIONALLY EFFICIENT QUADRATURE PROCEDURE 
FOR THE ONE-FACTOR MULTINOMIAL PROBIT MODEL 

BY J. S. BUTLER AND ROBERT MOFFITT' 

A PROBLEM OF ESTIMATION that has long confronted many economists is the difficulty of 
estimating the parameters of equations with limited dependent variables on cross-section 
time-series (i.e., panel) data. While there are widely available packaged computer pro- 
grams for estimating either (a) cross-section probit and Tobit models or (b) simple 
permanent-transitory, random-effects panel models with continuous dependent variables, 
there are no available computationally feasible methods of combining these two models. 
This is because the likelihood function that arises in such a combined model contains 
multivariate normal integrals whose evaluation is quite difficult, if not impossible, with 
conventional approximation methods. There is a widespread feeling among those working 
in the area that one possible method of evaluation, the use of quadrature techniques, is in 
principle possible but is in practice computationally too burdensome to consider (e.g., 
Albright et al. [2, p. 13]; Hausman and Wise [6, p. 12]). In this note we point out that this 
is true only of standard quadrature techniques such as trapezoidal integration or its 
improved variants; Gaussian quadrature, on the other hand, is extremely efficient and is 
well within the bounds of computational feasibility on modern computers. In what 
follows, we state the nature of the integrals that need to be evaluated, provide a brief 
exposition of Gaussian quadrature, and provide a numerical illustration of its use in 
estimating a one-factor multinomial probit model. 

Assume we have the following panel probit model: 

Yi*= Xil8 + EilN;(i=t 1= 1, . . . , T), 

It= if Y,*t > ?, 
"i 0 otherwise, 

where i indexes individuals, t indexes time periods, X is a vector of independent variables, 
and /8 is a vector of corresponding coefficients. Assume that the disturbances are 
generated by the permanent-transitory process Eit = pti + i,,, where Ej,---N(O, a2) and p is 
the correlation between successive disturbances for the same individual. The log- 
likelihood function for the problem is L = 1 log[prob( Y1, * *, YiT)], where 

(1) prob(Yil . YiT) b . fEf(El EiT)dET ... dE 

and ai, =-Xi/,8 and bit = oo if Yi, = 1, and ai1 =-oo and bit =-Xi/,8 if Yi, = 0, and f(.) 
is the normal density function. The standard difficulty in this problem is the evaluation of 
the T-fold integrals in equation (1). Since the random components are independent 
conditional upon the permanent component, the integral can be simplified by condition- 

'The authors would like to thank Mathematica Policy Research for subsidizing the research 
reported herein. Comments from Randall Brown and Timothy Carr as well as from two anonymous 
referees are much appreciated. 
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762 J. S. BUTLER AND R. MOFFITT 

ing on the permanent component: 

(2) prob(Y11, . . ., YiT)prob(Yil, YiT) 

-bl 
* bT 

I? f Pii)f( I ) di diT dvi1 aJla T oo 

T 

- 
X X i) 1 [ F(bi Ii) - F(a,,I t4)] dt, -o t=l 

where F( ) is the normal cumulative distribution function (cdf).2 Thus, the expression can 
be reduced to a single integral whose integrand is a product of one normal density and T 
differences of normal cdf's for which highly accurate approximations are available. 
Nevertheless, even the evaluation of the single integral in equation (2) is extremely 
burdensome using conventional quadrature procedures such as trapezoidal integration or 
its variants such as Romberg integration.3 Gaussian quadrature, on the other hand, is a 
much more sophisticated procedure that requires the evaluation of the integrand at many 
fewer points in the domain of t, thus achieving gains in computational efficiency of 
several orders of magnitude. The formula for the evaluation of the necessary integral is 
the Hermite integration formula f'J e- Z2 g(Z) dZ = E 7_I wjg(Zj), where G is the num- 
ber of evaluation points, w; is the weight given to the jth evaluation point, and g(Z1) is 
g(Z) evaluated at thejth point of Z.4 This formula is appropriate to our problem because 
the normal density f in equation (2) contains a term of the form exp(- Z 2), and the 
function g(Z) is, in our case, the product of T univariate cdf's. 

The key question for computational feasibility is the number of points at which the 
integrand must be evaluated for accurate approximation. Several evaluations of the 
integral using four periods of arbitrary values of the data and coefficients on six 
right-hand-side variables showed us that even two-point integration is highly accurate.5 
Table I provides estimates of a fertility equation (dependent variable = 1 if a birth in year 
t, 0 if not) on a sample of 1550 women with a maximum of 11 periods each, drawn from 
the Young Women's cohort of the National Longitudinal Survey. The algorithm of Berndt 
et al. [3] was used for maximization of the likelihood function.6 As the table shows, some 

2This factorization is "periodically and independently rediscovered" according to Gupta [5, p. 800] 
and has recently been discussed by Heckman [7]. See Heckman's paper for an explicit representation 
of the conditional cdf's equation (2). 

'For example, Heckman and Willis [8] used the extremely expensive trapezoidal technique. These 
methods approximate integrals such as that in (2) by a polynomial in the integrand evaluated at 
several equally spaced intervals in the domain of the integrating variable /L, which is quite expensive 
because the integrand must generally be evaluated at many points for the approximation to be of 
acceptable accuracy. See Pennington [10, 247-251] for a discussion. 

4See Stroud and Secrest [11, p. 22] and Pennington [10, p. 260]. Hermite integration can evaluate 
the integral fJ e - g(Z)dZ exactly with P points if g(Z) is a polynomial of degree less than 
2P- 1. Romberg integration requires 2 - I points to attain the same degree of accuracy. 

5Using synthetic data and arbitrary coefficients, and with X,f ranging from .60 to .75 in four 
periods of hypothetical data, the value of the integral for 2, 3, 4, and 5 evaluation points was 
.31735585, .31734161, .31734174, and .31734174, respectively. The points and weights for the 
calculations are available from several easily accessible sources: Stroud and Secrest [11], Abramowitz 
and Stegun [1, p. 924]. We also included an Appendix table in an earlier version of this paper giving 
the points and weights for two-point to five-point integrations. This is available upon request. 

6The starting values used were obtained by estimating the equation on only five periods of data, 
but using the approximation of Clark [4] for the evaluation of the integrals. Probit starting values 
could also have been used. The Clark approximation was tested on the eleven-period data and was 
found to be extremely inaccurate, even for the one-factor error structure assumed here. For example, 
the area under the 1 1-fold surface summed to 1.9 instead of 1.0. The inaccuracy was reduced the 
fewer the number of periods; for 5 the Clark approximation appeared to be reasonably accurate in 
the present problem. 
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QUADRATURE PROCEDURE 763 

TABLE I 
COEFFICIENT ESTIMATES OF A MULTINOMIAL PROBIT FERTILITY EQUATION USING GAUSSIAN 

QUADRATURE MAXIMUM LIKELIHOOD 

Number of Evaluation Points 

Variables' 2 3 4 5 

Constant 0.198006 0.579574 0.681029 0.895984 
(0.531493) (0.636880) (0.739860) (0.739124) 

Race 0.435691 * 0.391777* 0.372754* 0.399289* 
(0.048866) (0.062498) (0.066584) (0.067595) 

Education - 0.087276* - 0.104133* - 0.101742* - 0.107280* 
(0.011250) (0.013863) (0.016208) (0.016285) 

Coh - 0.023634* - 0.028942* - 0.030927* - 0.034811 * 
(0.009520) (0.011232) (0.012773) (0.012805) 

Wealth - 0.031125 0.058309 0.020812 0.041226 
(0.049793) (0.061394) (0.064974) (0.066930) 

Oths 0.028244 0.043871** 0.048919** 0.049346** 
(0.024087) (0.026354) (0.027525) (0.027569) 

Time 0.607854* 0.612613* 0.609026* 0.614247* 
(0.028321) (0.029532) (0.029249) (0.029550) 

Time Squared - 0.040195* - 0.040179* - 0.039651* - 0.040261* 
(0.002711) (0.002856) (0.002817) (0.002850) 

Rho 0.298808* 0.322650* 0.326820* 0.339101* 
(0.011360) (0.015322) (0.015920) (0.016491) 

CPU time (seconds)b 81.8 114.4 116.8 169.6 

NOTE: Standard errors in parentheses. 
*Significant at the 5 per cent level of confidence. 
** Significant at the 10 per cent level of confidence. 
aRace = I if nonwhite, 0 if not, Education years of schooling; Coh =year of birth (e.g., "48" for 1948); Wealth 

= discounted present value of lifetime family income other than wife's earnings (1967 dollars): 0th = number of adults in 
family other than husband and wife; Time = duration of marriage in years. Taken from Moffitt [9]. 

5Hermite points are symmetric about zero and include zero if there is an odd number of them. For purposes of 
calculation, then, 2k - I and 2k evaluation points are virtually equivalent, having k different absolute values. CPU times 
mainly rise in going from 2 to 3, 4 to 5, etc., evaluation points. 

coefficients change substantially, the more accurate the approximation of the likelihood 
function. However, those that change much at all are insignificant even at the lowest, 
two-point integration; no hypothesis test at the 5 per cent level of confidence would come 
out differently at the four-point evaluation and at the two-point evaluation. Going from 2 
to 3 point integration changes the "significant" coefficients (those on "Oths" and the six 
with t values above 2) an average of 16.2 per cent; going from 3 to 4 changes them an 
average of 4.1 per cent; and going from 4 to 5 changes them an average of 3.6 per cent.7 

{The average change in going from 3 to 5 points is 6.1 per cent. The likelihood function and its 
derivatives are being estimated more accurately with more points, but there is no simple link between 
this accuracy and the direction of change in the estimated coefficients. Four, six, and eight Hermite 
points replace 15, 31, and 127 trapezoids. 
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764 J. S. BUTLER AND R. MOFFITT 

Thus, those coefficients significant at the two-point evaluation are changed very little by 
the increase in accuracy. Therefore, the evidence shows clearly that a two-point evaluation 
is quite satisfactory for hypothesis testing, and probably also for significant coefficient 
values. The CPU times (for an IBM 370) shown at the bottom are well within financial 
feasibility at most academic and nonacademic institutions. 

We conclude with several points. First, in the context of a maximization algorithm, 
accuracy could be increased and costs reduced by raising the number of evaluation points 
as the likelihood function approaches its optimum. Second, a more general point is that 
the technique is clearly applicable to other limited-dependent-variable models such as 
single-bound Tobit, double-bound Tobit, and others that are currently proliferating. The 
modification required in each case is to replace the cdf's in equation (2) with whatever the 
appropriate cross-section analogue is (e.g., simple probability density functions for Tobit 
observations above the limit). Third, though we have not tested it ourselves, two-fold- 
integration by Gaussian methods may also be within the bounds of feasibility; this would 
allow the estimation of two-factor models as well. Fourth, the technique is applicable to 
the cross-section multiple-indicator model as well. That the dependent variables are 
limited in these models is usually ignored.8 

Mathematica Policy Research, Inc., Princeton, New Jersey 
and 

Rutgers University and Mathematica Policy Research, Inc., Princeton, New Jersey 

Manuscript received November, 1980; revision received June, 1981. 

8A copy of the deck used to estimate the equations in Table I is available from the authors at 
reproduction cost for two years from the date of publication. 
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